Augmentation of plant biomass productivity using epigeic earthworm Perionyx excavatus and Eisenia fetida as soil nutrient facilitators

Author:

Jing Lirikum,Kakati Lakhmi Nandan,Ao Bendang,Kiewhuo Patricia

Abstract

AbstractWith the increasing demand for organic food production, the earthworm is used as a soil nutrient facilitator. The present study was conducted to assess the effect of epigeic earthworms Perionyx excavatus and Eisenia. fetida on soil nutrients and the consequent improvement of biomass productivity and yield of Capsicum chinense Jacq and Zea mays L. The experiment was conducted in 5 L and 15 L capacity plastic pots for C. chinense and Z. mays with 150 g and 300 g of half-decomposed cow dung, respectively. It was observed that the weekly harvest rate of ripened chili was 17.59 g, 13.91 g, and 9.24 g in P. excavatus, control, and E. fetida pot showing 26.49% higher in P. excavatus. Also, the total kernel count per corn was significantly different (F(2, 9) = 37.78, p < 0.05), with the highest kernel present in P. excavatus(333.5 ± 13.5), followed by E. fetida(261.5 ± 16.5) and control (235 ± 22). The impact of P. excavatus was more perceptible in C. chinense, indicated by higher leaf biomass (69.16%), root length (30.14%), and fruit harvest (71.03%). However, the effect of E. fetida was noticed more in Z. mays (stem length, 19.24%, stem biomass, 14.39%, root biomass, 20.9%, kernel count, 41.91%, and kernel weight, 95.07%). Enhanced plant productivity was also supported by an increasing soil nutrient turnover in organic carbon (OC) (25.76% and 23.4%), Phosphorus (P) (31.03% and 25.67%), and Potassium (K) (41.67% and 12.26) in P. excavatus and E. fetida worked soil respectively. The findings indicate that earthworms have a notable impact on plant biomass productivity by promoting the mineralization of soil nutrients and imply on possibility of organic cultivation of seasonal vegetables without using synthetic fertilizers.

Funder

University Grants Commission

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3