The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod

Author:

Abouelregal Ahmed E.,Askar S. S.,Marin M.,Mohamed Badahiould

Abstract

AbstractBy laminating piezoelectric and flexible materials during the manufacturing process, we can improve the performance of electronic devices. In smart structure design, it is also important to understand how the functionally graded piezoelectric (FGP) structure changes over time when thermoelasticity is assumed. This is because these structures are often exposed to both moving and still heat sources during many manufacturing processes. Therefore, it is necessary to conduct theoretical and experimental studies of the electrical and mechanical characteristics of multilayer piezoelectric materials when they are subjected to electromechanical loads and heat sources. Since the infinite speed of heat wave propagation is a challenge that classical thermoelasticity cannot address, other models based on extended thermoelasticity have been introduced. For this reason, the effects of an axial heat supply on the thermomechanical behavior of an FGP rod using a modified Lord-Shulman model with the concept of a memory-dependent derivative (MDD) will be explored in this study. The exponential change of physical properties in the direction of the axis of the flexible rod will be taken into account. It was also assumed that there is no electric potential between the two ends of the rod while it is fixed at both ends and thermally isolated. Applying the Laplace transform method, the distributions of the physical fields under investigation were calculated. The obtained results were compared to those in the corresponding literature with varying heterogeneity values, kernel functions, delay times, and heat supply speeds. It was discovered that the studied physical fields and the dynamic behavior of the electric potential are weakened by increasing the inhomogeneity index.

Funder

King Saud University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3