Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data

Author:

Chattopadhyay Ashesh,Hassanzadeh PedramORCID,Pasha SabaORCID

Abstract

AbstractDeep learning techniques such as convolutional neural networks (CNNs) can potentially provide powerful tools for classifying, identifying, and predicting patterns in climate and environmental data. However, because of the inherent complexities of such data, which are often spatio-temporal, chaotic, and non-stationary, the CNN algorithms must be designed/evaluated for each specific dataset and application. Yet CNN, being a supervised technique, requires a large labeled dataset to start. Labeling demands (human) expert time which, combined with the limited number of relevant examples in this area, can discourage using CNNs for new problems. To address these challenges, here we (1) Propose an effective auto-labeling strategy based on using an unsupervised clustering algorithm and evaluating the performance of CNNs in re-identifying and predicting these clusters up to 5 days ahead of time; (2) Use this approach to label thousands of daily large-scale weather patterns over North America in the outputs of a fully-coupled climate model and show the capabilities of CNNs in re-identifying and predicting the 4 clustered regimes up to 5 days ahead of time. The deep CNN trained with 1000 samples or more per cluster has an accuracy of 90% or better for both identification and prediction while prediction accuracy scales weakly with the number of lead days. Accuracy scales monotonically but nonlinearly with the size of the training set, e.g. reaching 94% with 3000 training samples per cluster for identification and 93–76% for prediction at lead day 1–5, outperforming logistic regression, a simpler machine learning algorithm, by  ~ 25%. Effects of architecture and hyperparameters on the performance of CNNs are examined and discussed.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3