Temporal properties of positive and negative defocus on emmetropization

Author:

Zhu Xiaoying,Kang Pauline,Troilo David,Benavente-Perez Alexandra

Abstract

AbstractStudying the temporal integration of visual signals is crucial to understand how time spent on different visual tasks can affect emmetropization and refractive error development. In this study we assessed the effect of interrupting positive and negative lens-imposed defocus with brief periods of unrestricted vision or darkness. A total of forty-six marmosets were treated monocularly with soft contact lenses for 4 weeks from 10 weeks of age (OD: + 5D or − 5D; OS: plano). Two control groups wore + 5D (n = 5) or − 5D (n = 13) lenses continuously for 9 h/day. Two experimental groups had lens-wear interrupted for 30 min twice/day at noon and mid-afternoon by removing lenses and monitoring vision while marmosets sat at the center of a viewing cylinder (normal vision interruption, + 5D: n = 7; − 5D: n = 8) or while they were in the dark (dark interruption, + 5D: n = 7; − 5D: n = 6). The interruption period (30 min/day) represented approx. 10% of the total stimulation time (9 h/day). On-axis refractive error (RE) and vitreous chamber depth (VCD) were measured using an autorefractor and high frequency A-scan ultrasound at baseline and after treatment. Wearing + 5D lenses continuously 9 h/day for 4 weeks induced slowed eye growth and hyperopic shifts in RE in treated relative to contralateral control eyes (relative change, VCD: − 25 ± 11 μm, p > 0.05; RE: + 1.24 ± 0.58 D, p > 0.05), whereas − 5D lens wear resulted in larger and myopic eyes (relative change, VCD: + 109 ± 24 μm, p < 0.001; RE: − 2.03 ± 0.56 D, p < 0.05), significantly different from those in the + 5D lens-treated animals (p < 0.01 for both). Interrupting lens induced defocus with periods of normal vision or darkness for approx. 10% of the treatment time affected the resulting compensation differently for myopic and hyperopic defocus. Interrupting defocus with unrestricted vision reduced − 5D defocus compensation but enhanced + 5D defocus compensation (− 5D, VCD: + 18 ± 33 μm; RE: − 0.93 ± 0.50 D, both p > 0.05; + 5D, VCD: − 86 ± 30 μm; RE: + 1.93 ± 0.50 D, both p < 0.05). Interrupting defocus with darkness also decreased − 5D defocus compensation, but had little effect on + 5D defocus compensation (− 5D, VCD: + 73 ± 34 μm, RE: − 1.13 ± 0.77 D, p > 0.05 for both; + 5D, VCD: − 10 ± 28 μm, RE: + 1.22 ± 0.50 D, p > 0.05 for both). These findings in a non-human primate model of emmetropization are similar to those described in other species and confirm a non-linear model of visual signal integration over time. This suggests a mechanism that is conserved across species and may have clinical implications for myopia management in school-aged children.

Funder

American Optometric Foundation’s Mertz Fellowship

NEI grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3