Author:
Yan Yuan-Horng,Chen Ting-Bin,Yang Chun-Pai,Tsai I-Ju,Yu Hwa-Lung,Wu Yuh-Shen,Huang Winn-Jung,Tseng Shih-Ting,Peng Tzu-Yu,Chou Elizabeth P.
Abstract
AbstractAir pollution exposure has been linked to various diseases, including dementia. However, a novel method for investigating the associations between air pollution exposure and disease is lacking. The objective of this study was to investigate whether long-term exposure to ambient particulate air pollution increases dementia risk using both the traditional Cox model approach and a novel machine learning (ML) with random forest (RF) method. We used health data from a national population-based cohort in Taiwan from 2000 to 2017. We collected the following ambient air pollution data from the Taiwan Environmental Protection Administration (EPA): fine particulate matter (PM2.5) and gaseous pollutants, including sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), nitrogen oxide (NOx), nitric oxide (NO), and nitrogen dioxide (NO2). Spatiotemporal-estimated air quality data calculated based on a geostatistical approach, namely, the Bayesian maximum entropy method, were collected. Each subject's residential county and township were reviewed monthly and linked to air quality data based on the corresponding township and month of the year for each subject. The Cox model approach and the ML with RF method were used. Increasing the concentration of PM2.5 by one interquartile range (IQR) increased the risk of dementia by approximately 5% (HR = 1.05 with 95% CI = 1.04–1.05). The comparison of the performance of the extended Cox model approach with the RF method showed that the prediction accuracy was approximately 0.7 by the RF method, but the AUC was lower than that of the Cox model approach. This national cohort study over an 18-year period provides supporting evidence that long-term particulate air pollution exposure is associated with increased dementia risk in Taiwan. The ML with RF method appears to be an acceptable approach for exploring associations between air pollutant exposure and disease.
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. WHO releases country estimates on air pollution exposure and health impact, (2016).
2. Faridi, S. et al. Long-term trends and health impact of PM2.5 and O3 in Tehran, Iran, 2006–2015. Environ. Int. 114, 37–49. https://doi.org/10.1016/j.envint.2018.02.026 (2018).
3. Sun, G. et al. Association between air pollution and the development of rheumatic disease: A systematic review. Int. J. Rheumatol. 2016, 1–11 (2016).
4. Zhang, H. et al. Ambient air pollution exposure and gestational diabetes mellitus in Guangzhou, China: A prospective cohort study. Sci. Total Environ. 699, 134390. https://doi.org/10.1016/j.scitotenv.2019.134390 (2020).
5. Rovira, J., Domingo, J. L. & Schuhmacher, M. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County Catalonia. Spain. Sci. Total Environ. 703, 135538. https://doi.org/10.1016/j.scitotenv.2019.135538 (2020).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献