Author:
Liu Nannan,Chen Yixiao,Wang Yuhan,Wu Sha,Wang Jie,Qi Luming,Deng Tingting,Xia Lina
Abstract
AbstractThis study demonstrates the effect and DNA methylation-related mechanisms of a high-salt diet and salt memory-induced hypertension and vasculopathy. Thirty Sprague Dawley rats were randomly divided into a control (CON) group (n = 6) and a modeling group (n = 24). A 12% NaCl solution (1 mL/100 g) was intragastrically administered for 60 consecutive days for modeling. An increase in blood pressure up to 140 mmHg was considered successful modeling. Twelve of fifteen successfully modeled rats were randomly selected and divided into a High Salt Diet (HSD) group and a High Salt Memory (HSM) group (n = 6). Rats in HSD group were intragastrically administered a 12% NaCl solution, while rats in HSM group were administered a 3% NaCl solution twice a day for 30 days. At the end of the intervention, blood pressure and the serum levels of ET-1, NO, TNF-α and IL-1β were measured. RRBS-heavy sulfite sequencing technology was selected for DNA methylation analysis. The systolic blood pressure of rats in the HSD group and HSM group was significantly higher than that in the CON group. Compared with those in the CON group, the serum levels of ET-1 in the HSM group and the serum levels of NO in the HSD group and HSM group were significantly increased. The methylation level of the CON group was lower than that of the HSD group and the HSM group, and there was no significant difference between the HSD group and the HSM group. The methylation level of Myoz3 was downregulated in the HSD group and HSM group. The methylation level of Fgd3 were upregulated in HSD group and downregulated in the HSM group. The methylation levels of AC095693.1, Adamts3, PDGFA and PDGFRα were downregulated in the HSD group and upregulated in the HSM group. According to the GO database, the differentially methylated genes were significantly enriched in the coordination of cell function, genetic development, and RNA transcription. There were three main metabolic pathways that were enriched in the differentially expressed genes between the groups: the PI3K-Akt signaling pathway, MAPK signaling pathway, and Hippo signaling pathway. Excessive salt intake may cause hypertension and vascular damage, and this damage may continue after the reduction of salt intake. Therefore, salt memory phenomenon exists, and this memory effect may be correlated with the levels of DNA methylation.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 393(10184), 1958–1972 (2019).
2. Strazzullo, P. et al. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ 339, b4567 (2009).
3. Faraco, G. et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574(7780), 686–690 (2019).
4. Fiocco, A. J. et al. Sodium intake and physical activity impact cognitive maintenance in older adults: The NuAge Study. Neurobiol. Aging 33(4), 829.e21–8 (2012).
5. Gardener, H. et al. Dietary sodium and risk of stroke in the Northern Manhattan study. Stroke 43(5), 1200–1205 (2012).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献