Abstract
AbstractKidneys are key regulators of phosphate homeostasis. Biallelic mutations of the renal Na+/phosphate cotransporter SLC34A1/NaPi-IIa cause idiopathic infantile hypercalcemia, whereas monoallelic mutations were frequently noted in adults with kidney stones. Genome-wide-association studies identified SLC34A1 as a risk locus for chronic kidney disease. Pathogenic mutations in SLC34A1 are present in 4% of the general population. Here, we characterize a mouse model carrying the 91del7 in-frame deletion, a frequent mutation whose significance remains unclear. Under normal dietary conditions, 12 weeks old heterozygous and homozygous males have similar plasma and urinary levels of phosphate as their wild type (WT) littermates, and comparable concentrations of parathyroid hormone, fibroblast growth factor 23 (FGF-23) and 1,25(OH)2 vitamin D3. Renal phosphate transport, and expression of NaPi-IIa and NaPi-IIc cotransporters, was indistinguishable in the three genotypes. Challenging mice with low dietary phosphate did not result in differences between genotypes with regard to urinary and plasma phosphate. Urinary and plasma phosphate, plasma FGF-23 and expression of cotransporters were similar in all genotypes after weaning. Urinary phosphate and bone mineral density were also comparable in 300 days old WT and mutant mice. In conclusion, mice carrying the 91del7 truncation do not show signs of impaired phosphate homeostasis.
Funder
Swiss National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Bergwitz, C. & Juppner, H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu. Rev. Med. 61, 91–104 (2010).
2. Estepa, J. C. et al. Effect of phosphate on parathyroid hormone secretion in vivo. J. Bone Miner. Res. 14(11), 1848–1854 (1999).
3. Condamine, L. et al. Local action of phosphate depletion and insulin-like growth factor 1 on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells. J. Clin. Invest. 94(4), 1673–1679 (1994).
4. Forster, I. et al. Phosphate transporters in renal, gastrointestinal, and other tissues. Adv. Chronic. Kidney Dis. 18(2), 63–76 (2011).
5. Hernando, N. et al. 1,25(OH)2 vitamin D3 stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine. J. Physiol. 599, 131 (2020).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献