Author:
Song Hoseung,Liu Hongjiao,Wu Michael C.
Abstract
AbstractCluster-correlated data receives a lot of attention in biomedical and longitudinal studies and it is of interest to assess the generalized dependence between two multivariate variables under the cluster-correlated structure. The Hilbert–Schmidt independence criterion (HSIC) is a powerful kernel-based test statistic that captures various dependence between two random vectors and can be applied to an arbitrary non-Euclidean domain. However, the existing HSIC is not directly applicable to cluster-correlated data. Therefore, we propose a HSIC-based test of independence for cluster-correlated data. The new test statistic combines kernel information so that the dependence structure in each cluster is fully considered and exhibits good performance under high dimensions. Moreover, a rapid p value approximation makes the new test fast applicable to large datasets. Numerical studies show that the new approach performs well in both synthetic and real world data.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Kernel Angle Dependence Measures in Metric Spaces;Journal of Computational and Graphical Statistics;2024-07-10