Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae

Author:

James Rebecca K.,Hepburn Christopher D.,Pritchard Daniel,Richards Derek K.,Hurd Catriona L.

Abstract

AbstractThe supply of dissolved inorganic carbon to seaweeds is a key factor regulating photosynthesis. Thinner diffusive boundary layers at the seaweed surface or greater seawater carbon dioxide (CO2) concentrations increase CO2 supply to the seaweed surface. This may benefit seaweeds by alleviating carbon limitation either via an increased supply of CO2 that is taken up by passive diffusion, or via the down-regulation of active carbon concentrating mechanisms (CCMs) that enable the utilization of the abundant ion bicarbonate (HCO3). Laboratory experiments showed that a 5 times increase in water motion increases DIC uptake efficiency in both a non-CCM (Hymenena palmata, Rhodophyta) and CCM (Xiphophora gladiata, Phaeophyceae) seaweed. In a field survey, brown and green seaweeds with active-CCMs maintained their CCM activity under diverse conditions of water motion. Whereas red seaweeds exhibited flexible photosynthetic rates depending on CO2 availability, and species switched from a non-CCM strategy in wave-exposed sites to an active-CCM strategy in sheltered sites where mass transfer of CO2 would be reduced. 97–99% of the seaweed assemblages at both wave-sheltered and exposed sites consisted of active-CCM species. Variable sensitivities to external CO2 would drive different responses to increasing CO2 availability, although dominance of the CCM-strategy suggests this will have minimal impact within shallow seaweed assemblages.

Funder

Marsden Fund

Foundation for Research, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3