Multi-model sequential analysis of MRI data for microstructure prediction in heterogeneous tissue

Author:

Enríquez-Mier-y-Terán Francisco E.,Chatterjee Aritrick,Antic Tatjana,Oto Aytekin,Karczmar Gregory,Bourne Roger

Abstract

AbstractWe propose a general method for combining multiple models to predict tissue microstructure, with an exemplar using in vivo diffusion-relaxation MRI data. The proposed method obviates the need to select a single ’optimum’ structure model for data analysis in heterogeneous tissues where the best model varies according to local environment. We break signal interpretation into a three-stage sequence: (1) application of multiple semi-phenomenological models to predict the physical properties of tissue water pools contributing to the observed signal; (2) from each Stage-1 semi-phenomenological model, application of a tissue microstructure model to predict the relative volumes of tissue structure components that make up each water pool; and (3) aggregation of the predictions of tissue structure, with weightings based on model likelihood and fractional volumes of the water pools from Stage-1. The multiple model approach is expected to reduce prediction variance in tissue regions where a complex model is overparameterised, and bias where a model is underparameterised. The separation of signal characterisation (Stage-1) from biological assignment (Stage-2) enables alternative biological interpretations of the observed physical properties of the system, by application of different tissue structure models. The proposed method is exemplified with human prostate diffusion-relaxation MRI data, but has potential application to a wide range of analyses where a single model may not be optimal throughout the sampled domain.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3