Author:
Yoon Je Moon,Lim Chae Yeon,Noh Hoon,Nam Seung Wan,Jun Sung Yeon,Kim Min Ji,Song Mi Yeon,Jang Hyemin,Kim Hee Jin,Seo Sang Won,Na Duk L.,Chung Myung Jin,Ham Don-Il,Kim Kyungsu
Abstract
AbstractWe propose a hybrid technique that employs artificial intelligence (AI)-based segmentation and machine learning classification using multiple features extracted from the foveal avascular zone (FAZ)—a retinal biomarker for Alzheimer’s disease—to improve the disease diagnostic performance. Imaging data of optical coherence tomography angiography from 37 patients with Alzheimer’s disease and 48 healthy controls were investigated. The presence or absence of brain amyloids was confirmed using amyloid positron emission tomography. In the superficial capillary plexus of the angiography scans, the FAZ was automatically segmented using an AI method to extract multiple biomarkers (area, solidity, compactness, roundness, and eccentricity), which were paired with clinical data (age and sex) as common correction variables. We used a light-gradient boosting machine (a light-gradient boosting machine is a machine learning algorithm based on trees utilizing gradient boosting) to diagnose Alzheimer’s disease by integrating the corresponding multiple radiomic biomarkers. Fivefold cross-validation was applied for analysis, and the diagnostic performance for Alzheimer’s disease was determined by the area under the curve. The proposed hybrid technique achieved an area under the curve of $$72.2\pm 4.2$$
72.2
±
4.2
%, outperforming the existing single-feature (area) criteria by over 13%. Furthermore, in the holdout test set, the proposed technique exhibited a 14% improvement compared to single features, achieving an area under the curve of 72.0± 4.8%. Based on these facts, we have demonstrated the effectiveness of our technology in achieving significant performance improvements in FAZ-based Alzheimer’s diagnosis research through the use of multiple radiomic biomarkers (area, solidity, compactness, roundness, and eccentricity).
Funder
National Research Foundation of Korea (NRF) funded by the Korean government
This work was also supported by the Future Medicine 20*30 Project of the Samsung Medical Center
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献