Author:
Zhang Yue,Yasutake Daisuke,Hidaka Kota,Kimura Kensuke,Okayasu Takashi,Kitano Masaharu,Hirota Tomoyoshi
Abstract
AbstractCO2 enrichment is an essential environmental control technology due to its significantly enhancing effect on crop production capacity. Despite being a key energy consumer in protected agriculture (i.e. greenhouse systems), CO2 enrichment remains at a low energy use efficiency level, highlighting the need for developing more energy-efficiency strategies for CO2 enrichment. Therefore, this study employed the computational fluid dynamics (CFD) simulation method to replicate the CO2 diffusion process resulting from CO2 enrichment in three commercial strawberry greenhouses with varying geometric characteristics. Based on the CFD-simulated CO2 concentration distributions, the leaf photosynthetic rate was calculated using a mathematical model group. The CO2 enrichment efficiency was then analysed by calculating the ratio of increased photosynthesis across the cultivation area to the amount of energy (in CO2 equivalent) used. The efficiency peaked when the average CO2 concentration was approximately 500 μmol mol−1, thereby providing guidance for determining the target concentration of CO2 enrichment in production. Although this study is limited as the CFD simulation only considered a typical short-period CO2 enrichment event, future research will provide a broader analysis by considering changes throughout the day.
Funder
Cabinet Office grant in aid
the Ministry of Agriculture, Forestry and Fisheries
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献