A soft sensing method of billet surface temperature based on ILGSSA-LSSVM

Author:

Liu Jun,Yang Luying,Nan Xinhao,Liu Yifan,Hou Qingming,Lan Kun,Yang Feng

Abstract

AbstractIt is difficult to measure the surface temperature of continuous casting billet, which results in the lack of important feedback parameters for further scientific control of the billet quality. This paper proposes a sparrow search algorithm to optimize the Least Square Support Vector Machine (LSSVM) model for surface temperature prediction of the billet, which is further improved by Logistic Chaotic Mapping and Golden Sine Algorithm (Improve Logistic Golden Sine Sparrow Search Algorithm LSSVM, short name ILGSSA-LSSVM). Using the Improved Logistic Chaos Mapping and Golden Sine Algorithm to find the optimal initial sparrow population, the value of penalty factor $$\gamma$$ γ and kernel parameter $$\sigma$$ σ for LSSVM are calculated. Global optimization method is adopted to find the optimal parameter combination, so that the negative influence of randomly initializing parameters on the prediction accuracy would be reduced. Our proposed ILGSSA-LSSVM soft sensing model is compared respectively with traditional Least Square Support Vector Machine, BP neural network and Gray Wolf optimized Least Square Support Vector Machine, results show that proposed model outperformed the others. Experiments show that the maximum error of ILGSA-LSSVM soft sensing model is 3.85733 °C, minimum error is 0.0174 °C, average error is 0.05805 °C, and generally outperformed other comparison models.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference26 articles.

1. Jun, L. et al. New solution to surface temperature of casting billet measurement based on preceded reflector and multi-wavelength[J]. J. Iron Steel Res. (Int.) 19(8), 12–16 (2012).

2. Yuzhong, Z. Research on method and application of vision-based temperature field measurement for continuous casting billet [D] (Northeastern University, 2014).

3. Jiaocheng, Ma. et al. The temperature field measurement of billet based on multi-information fusion. Mater. Trans. 55(8), 1319–1323 (2014).

4. Jiaocheng, Ma., Jun, L. & Biao, W. Based on multi-information fusion casting billet temperature field measurement method and analysis of influencing factors. Acta Electron. Sin. 43(8), 1616-1620(EI) (2015).

5. Nath, N. K. et al. Ladle furnace online reckoner for prediction and control of steel temperature and composition [J]. Ironmak. Steelmak. 33(2), 140–150 (2006).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3