Origin and hydrodynamics of xylem sap in tree stems, and relationship to root uptake of soil water

Author:

Mahara Yasunori,Ohta Tomoko,Ohshima Jyunichi,Iizuka Kazuya

Abstract

AbstractAlthough 10 years have passed since Japan’s Fukushima nuclear accident, the future radiation risk from 137Cs contamination of wood via root uptake is a serious concern. We estimated the depth at which the roots of evergreen coniferous sugi (Cryptomeria japonica) and broadleaf deciduous konara (Quercus serrata) trees actively take up soil water by using positive δD values from the artificial D2O tracer and seasonal changes in the δ18O values of soil water as a natural environmental tracer. We compared the tracer concentration changes in xylem sap with those in the soil water and ascertained that both tree species primarily took up water from a depth of 20 cm, though with mixing of water from other depths. Using sap hydrodynamics in tree stems, we found that water circulation was significantly slower in heartwood than in sapwood. Heartwood water was not supplied by direct root uptake of soil water. The measured diffusion coefficients for D2O, K+, Cs+, and I in xylem stems were greater in sapwood than in heartwood, and their magnitude was inversely correlated with their molecular weights. The distribution of D2O and 137Cs concentrations along the radial stem could be explained by simulations using the simple advective diffusion model.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3