Effects of combined extreme cold and drought stress on growth, photosynthesis, and physiological characteristics of cool-season grasses

Author:

Li Juanxia,Bai Xiaoming,Ran Fu,Zhang Caizhong,Yan Yubang,Li Ping,Chen Hui

Abstract

AbstractAbiotic stress is an important factor affecting turf establishment and limiting the sustainability of the turf industry. To alleviate the effects of combined cold and drought stress in cold- and drought-prone regions, it is essential to select and introduce turfgrass germplasms that are suitable for these conditions for successful turf establishment. Thus, we evaluated the effects of combined extreme cold and drought stress on the morphological, plant leaf functional, photosynthetic, and physiological and biochemical traits of 16 wild annual bluegrass (Poa annua) germplasms. We found that there were significant differences (P < 0.05) among different provenances, combined cold and drought stress, and the main interaction factors. Combined cold and drought stress altered the morphological characteristics of the 16 germplasms to varying degrees. Furthermore, combined cold and drought stress significantly reduced the net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), instantaneous water use efficiency (WUE), chlorophyll content, chlorophyll fluorescence parameters, accumulated intercellular CO2 concentration (Ci), and relative electrical conductivity (REC) and malondialdehyde (MDA), proline (Pro), soluble protein (SP), soluble sugar (SS), superoxide anion (O2.-), hydrogen peroxide (H2O2), and hydroxyl radical (·OH) and other active oxygen, and increased the superoxide dismutase activity (SOD), peroxidase activity (POD), catalase activity (CAT), ascorbate peroxidase activity (APX) and glutathione reductase (GR) activities. Comprehensive evaluation using principal component analysis (PCA), membership function analysis, and clustered heatmaps indicated that the ‘HZ’ germplasm had stronger combined cold and drought tolerance, whereas the ‘ZQ’ germplasm was more sensitive to combined cold and drought, which was roughly consistent with the order of morphological damage symptoms. Therefore, it is recommended to use the ‘HZ’ germplasm for planting projects in cold- and drought-prone areas, while the ‘ZQ’ germplasm is more suitable for use under warmer and non-water-deficient conditions.

Funder

the National Natural Science Foundation of China

Gansu Forestry and Grassland Bureau Grassland Ecological Restoration and Management Science and Technology Support Project

Innovation Star” Project for Outstanding Postgraduates in Gansu Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3