Interface engineering for facile switching of bulk-strong polarization in Si-compatible vertical superlattices

Author:

Kumar Pawan,Lee Jun Hee

Abstract

AbstractFerroelectric thin films incorporating different compositional layers have emerged as a promising approach for enhancing properties and performance of electronic devices. In recent years, superlattices utilizing various interactions between their constituent layers have been used to reveal unusual properties, such as improper ferroelectricity, charged domain walls, and negative capacitance in conventional ferroelectrics. Herein, we report a symmetry scheme based on the interface engineering in which the inherent cell-doubling symmetry allowed atomic distortions (phonons) in any vertically aligned superlattice activate novel interface couplings among atomic distortions of different symmetries and fundamentally improve the ferroelectric properties. In a materialized case, the ionic size difference between Hf4+ and Ce4+ in the HfO2/CeO2 (HCO) ferroelectric/paraelectric superlattice leads to these couplings. These couplings mitigate the phase boundary between polar and non-polar phases, and facilitate polarization switching with a remarkably low coercive field ($${E}_{c}$$ E c ) while preserving the original magnitude of the bulk HfO2 polarization and its scale-free ferroelectric characteristics. We show that the cell-doubled distortions present in any vertical superlattice have unique implications for designing low-voltage ferroelectric switching while retaining bulk-strong charge storing capacities in Si-compatible memory candidates.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3