Bulk and interfacial properties of decane in the presence of carbon dioxide, methane, and their mixture

Author:

Choudhary Nilesh,Narayanan Nair Arun Kumar,Che Ruslan Mohd Fuad Anwari,Sun Shuyu

Abstract

AbstractMolecular dynamics simulations were performed to study the bulk and interfacial properties of methane + n-decane, carbon dioxide + n-decane, and methane + carbon dioxide + n-decane systems under geological conditions. In addition, theoretical calculations using the predictive Peng-Robinson equation of state and density gradient theory are carried out to compare with the simulation data. A key finding is the preferential dissolution in the decane-rich phase and adsorption at the interface for carbon dioxide from the methane/carbon dioxide mixture. In general, both the gas solubility and the swelling factor increase with increasing pressure and decreasing temperature. Interestingly, the methane solubility and the swelling of the methane + n-decane system are not strongly influenced by temperature. Our results also show that the presence of methane increases the interfacial tension (IFT) of the carbon dioxide + n-decane system. Typically, the IFT of the studied systems decreases with increasing pressure and temperature. The relatively higher surface excess of the carbon dioxide + n-decane system results in a steeper decrease in its IFT as a function of pressure. Such systematic investigations may help to understand the behavior of the carbon dioxide-oil system in the presence of impurities such as methane for the design and operation of carbon capture and storage and enhanced oil recovery processes.

Funder

King Abdullah University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference72 articles.

1. Birol, F. Co2 Emissions from fuel combustion highlights (2016).

2. Houghton, E. Climate change 1995: The science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change, vol. 2 (Cambridge University Press, 1996).

3. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184 (2000).

4. Stocker, T. F. et al. Climate change 2013: The physical science basis (2013).

5. Moore, J. C., Gladstone, R., Zwinger, T. & Wolovick, M. Geoengineer polar glaciers to slow sea-level rise (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3