1. Mislove, A., Lehmann, S., Ahn, Y.-Y., Onnela, J.-P. & Rosenquist, J. N. Pulse of the nation: US mood throughout the day inferred from Twitter http://www.ccs.neu.edu/home/amislove/twittermood/ (2010).
2. Hannak, A. et al. Tweetin’ in the rain: exploring societal-scale effects of weather on mood. In Proc. 6th Int. AAAI Conf. Weblogs Soc. Media, 479–482 (Dublin, Ireland, 2012).
3. Pak, A. & Paroubek, P. Twitter as a corpus for sentiment analysis and opinion mining. In Proc. Seventh Int. Conf. Lang. Resour. Eval., pp. 19–21 (European Language Resources Association (ELRA), Valletta, Malta, 2010).
4. Quattrociocchi, W., Caldarelli, G. & Scala, A. Opinion dynamics on interacting networks: media competition and social influence. Sci. Rep. 4, 4938, https://doi.org/10.1038/srep04938 (2014).
5. Liu, Y., Huang, X., An, A. & Yu, X. ARSA: a sentiment-aware model for predicting sales performance using blogs. In Proc. 30th Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., 607 (ACM Press, New York, New York, USA, https://doi.org/10.1145/1277741.1277845 (2007).