Early histopathological changes of secondary degeneration in the spinal cord after total MCA territory stroke

Author:

Kollai Sarolta,Bereczki Dániel,Glasz Tibor,Hortobágyi Tibor,Kovács Tibor

Abstract

AbstractPrevious research has not demonstrated secondary degeneration of the spinal cord (SpC) motoneurons after cerebral infarct. The aim of the present study is to investigate the involvement of the anterior horn cells (AHC) in the early post-stroke period using histomorphological and immunohistochemical methods. Post-mortem analysis of the 6th cervical segment was performed in 7 patients who had total MCA stroke within 1 month before death. Nissl-stained sections were used for morphometry, while CD68 and synaptophysin (SYP) immunohistochemistry to monitor microglial activation and synaptic changes in the anterior horn (AH), respectively. Contralateral to the cerebral lesion (contralesional side), cells were smaller after 3 days and larger after 1 week of stroke, especially regarding the large alpha motoneurons. CD68 density increased mainly on the contralesional Rexed’s IX lamina of the SpC. SYP coverage of the large motoneurons was reduced on the contralesional side. Early microglial activation in the AH and electrophysiological signs has suggested the possibility of impairment of anterior horn cells (AHC-s). Our study supported that early microglial activation in the contralesional side of the SpC may primarily affect the area corresponding to the location of large motoneurons, and is accompanied by a transient shrinkage followed by increase in size of the large AHC-s with a reduction of their synaptic coverage. After MCA stroke, early involvement of the SpC motoneurons may be suspected by their morphological and synaptic changes and by the pattern of microglial activation.

Funder

National Research, Development and Innovation Office, Hungary.

Hungarian Brain Research Program NAP 2.0

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3