A security-aware service function chain deployment method for load balance and delay optimization

Author:

Zhai Dong,Meng Xiangru,Yu Zhenhua,Hu Hang,Huang Tao

Abstract

AbstractNetwork function virtualization (NFV) decouples network functions from hardware devices. However, it introduces security challenges due to its reliance on software, which facilitates attacks. This security problem has a significant negative impact on the interests of users. Existing deployment methods are not suitable for SFC requests with a security demand, causing the use of substrate resources unreasonable and lower acceptance ratio. Moreover, a strict delay requirement is another challenge for NFV. To make the use of the substrate resources more reasonable and reduce the transmission delay, this paper proposes a security-constraint and function-mutex-constraint consolidation (SFMC) method for virtual network function (VNF) to reduce resource consumption and transmission delay. In addition, a security-aware service function chain (SASFC) deployment method for load balance and delay optimization is presented, which deploys service function chains according to the consolidated results of the SFMC method. The SASFC method first obtains a candidate server node set using resource, hosting capacity, security and node load constraints. It then obtains candidate paths according to the metric of the minimum transmission delay and link load constraint using the Viterbi algorithm. Finally, the path with the highest VNF security level match degree among the candidate paths is adopted to deploy virtual links, and the corresponding server nodes are employed to deploy VNFs. As a result, the SASFC method makes the use of substrate resources more reasonable. It improves the acceptance ratio and long-term average revenue to cost ratio, reduces transmission delay, and achieves load balancing. Experiment results show that when the number of VNFs is five, the acceptance ratio and long-term average revenue to cost ratio of the SASFC method are close to 0.75 and 0.88, which are higher than those of the compared methods. Its transmission delay and proportion of bottleneck nodes are 7.71 and 0.024, which are lower than those of the compared methods. The simulations demonstrate the effectiveness of the SASFC method.

Funder

the Key Research and Development Program of Shaanxi Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3