Ceramic transition metal diboride superlattices with improved ductility and fracture toughness screened by ab initio calculations

Author:

Fiantok Tomáš,Koutná Nikola,Sangiovanni Davide G.,Mikula Marián

Abstract

AbstractInherent brittleness, which easily leads to crack formation and propagation during use, is a serious problem for protective ceramic thin-film applications. Superlattice architectures, with alternating nm-thick layers of typically softer/stiffer materials, have been proven powerful method to improve the mechanical performance of, e.g., cubic transition metal nitride ceramics. Using high-throughput first-principles calculations, we propose that superlattice structures hold promise also for enhancing mechanical properties and fracture resistance of transition metal diborides with two competing hexagonal phases, $$\alpha$$ α and $$\omega$$ ω . We study 264 possible combinations of $$\alpha /\alpha$$ α / α , $$\alpha /\omega$$ α / ω or $$\omega /\omega$$ ω / ω MB$$_2$$ 2 (where M $$=$$ = Al or group 3–6 transition metal) diboride superlattices. Based on energetic stability considerations, together with restrictions for lattice and shear modulus mismatch ($$\Delta a<4\%$$ Δ a < 4 % , $$\Delta G>40$$ Δ G > 40  GPa), we select 33 superlattice systems for further investigations. The identified systems are analysed in terms of mechanical stability and elastic constants, $$C_{ij}$$ C ij , where the latter provide indication of in-plane vs. out-of-plane strength ($$C_{11}$$ C 11 , $$C_{33}$$ C 33 ) and ductility ($$C_{13}-C_{44}$$ C 13 - C 44 , $$C_{12}-C_{66}$$ C 12 - C 66 ). The superlattice ability to resist brittle cleavage along interfaces is estimated by Griffith’s formula for fracture toughness. The $$\alpha /\alpha$$ α / α -type TiB$$_2$$ 2 /MB$$_2$$ 2 (M $$=$$ = Mo, W), HfB$$_2$$ 2 /WB$$_2$$ 2 , VB$$_2$$ 2 /MB$$_2$$ 2 (M $$=$$ = Cr, Mo), NbB$$_2$$ 2 /MB$$_2$$ 2 (M $$=$$ = Mo, W), and $$\alpha /\omega$$ α / ω -type AlB$$_2$$ 2 /MB$$_2$$ 2 (M $$=$$ = Nb, Ta, Mo, W), are suggested as the most promising candidates providing atomic-scale basis for enhanced toughness and resistance to crack growth.

Funder

Agentúra na Podporu Výskumu a Vývoja

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Operational Program Integrated Infrastructure

Austrian Science Fund

Competence Center Functional Nanoscale Materials

Svenska Forskningsrådet Formas

Swedish Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3