Hyperspectral image reconstruction from colored natural flame luminosity imaging in a tri-fuel optical engine

Author:

Cheng Qiang,Karimkashi Shervin,Ahmad Zeeshan,Kaario Ossi,Vuorinen Ville,Larmi Martti

Abstract

AbstractThe detection of chemiluminescence from various radicals and molecules in a hydrocarbon flame can provide valuable information on the rate of local heat release, combustion stability, and combustion completeness. In this study, chemiluminescence from the combustion process is detected using a high-speed color camera within the broadband spectrum of visible light. Whereon, a novel hyperspectral reconstruction approach based on the physically plausible spectral reconstruction (PPSR) is employed to reconstruct the spectral chemiluminescence signals from 400 to 700 nm with a resolution of 10 nm to provide 31 different spectral channels. The reconstructed key chemiluminescence signals (e.g., CH*, CH2O*, C2*, and CO2*) from the color images are further analyzed to characterize the chemical kinetics and combustion processes under engine conditions. The spectral chemiluminescence evolution with engine crank angle is identified to comprehend the effect of H2 fraction on flame characteristics and combustion kinetics. Additionally, in this study, a detailed kinetic mechanism is adopted to deepen the theoretical understanding and describe the spectral chemiluminescence from H2/CH4 and H2/CH4/n-dodecane flames at relevant conditions for various species including OH*, CH*, C2*, and CO2*. The results indicate that the PPSR is an adequately reliable approach to reconstructing spectral wavelengths based on chemiluminescence signals from the color images, which can potentially provide qualitative information about the evolution of various species during combustion. Here, the reconstructed chemiluminescence images show less than 1% errors compared to the raw images in red, green, and blue channels. Furthermore, the reconstructed chemiluminescence trends of CH*, CH2O*, C2*, and CO2* show a good agreement with the detailed kinetics 0D simulation.

Funder

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3