Modeling health and well-being measures using ZIP code spatial neighborhood patterns

Author:

Jain Abhi,LaValley Michael,Dukes Kimberly,Lane Kevin,Winter Michael,Spangler Keith R.,Cesare Nina,Wang Biqi,Rickles Michael,Mohammed Shariq

Abstract

AbstractIndividual-level assessment of health and well-being permits analysis of community well-being and health risk evaluations across several dimensions of health. It also enables comparison and rankings of reported health and well-being for large geographical areas such as states, metropolitan areas, and counties. However, there is large variation in reported well-being within such large spatial units underscoring the importance of analyzing well-being at more granular levels, such as ZIP codes. In this paper, we address this problem by modeling well-being data to generate ZIP code tabulation area (ZCTA)-level rankings through spatially informed statistical modeling. We build regression models for individual-level overall well-being index and scores from five subscales (Physical, Financial, Social, Community, Purpose) using individual-level demographic characteristics as predictors while including a ZCTA-level spatial effect. The ZCTA neighborhood information is incorporated by using a graph Laplacian matrix; this enables estimation of the effect of a ZCTA on well-being using individual-level data from that ZCTA as well as by borrowing information from neighboring ZCTAs. We deploy our model on well-being data for the U.S. states of Massachusetts and Georgia. We find that our model can capture the effects of demographic features while also offering spatial effect estimates for all ZCTAs, including ones with no observations, under certain conditions. These spatial effect estimates provide community health and well-being rankings of ZCTAs, and our method can be deployed more generally to model other outcomes that are spatially dependent as well as data from other states or groups of states.

Funder

Sharecare

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Harrell, R. AARP’S livability index: A picture of how communities meet the needs of people of all ages. Innov. Aging 1, 959 (2017).

2. Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L. & Lewis, B. A social vulnerability index for disaster management. J. Homeland Secur. Emerg. Manag. 8, 1–22 (2011).

3. Remington, P. L., Catlin, B. B. & Gennuso, K. P. The county health rankings: Rationale and methods. Popul. Health Metrics 13, 1–12 (2015).

4. Harrell, R., Lynott, J. & Guzman, S. Is This a Good Place to Live? Measuring Community Quality of Life for All Ages (AARP Public Policy Institute, Measuring Community Quality of Life for All Ages, 2014).

5. Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3