Author:
Seon Gyeongho,Kim Hee Su,Cho Jun Muk,Kim Minsik,Park Won-Kun,Chang Yong Keun
Abstract
AbstractMicroalgae accumulate abundant lipids and are a promising source for biodiesel. However, carbohydrates account for 40% of microalgal biomass, an important consideration when using them for the economically feasible production of biodiesel. In this study, different acid hydrolysis and post-treatment processing of Chlorella sp. ABC-001 was performed, and the effect of these different hydrolysates on bioethanol yield by Saccharomyces cerevisiae KL17 was evaluated. For hydrolysis using H2SO4, the neutralization using Ca(OH)2 led to a higher yield (0.43 g ethanol/g sugars) than NaOH (0.27 g ethanol/g sugars). Application of electrodialysis to the H2SO4 + NaOH hydrolysate increased the yield to 0.35 g ethanol/g sugars, and K+ supplementation further enhanced the yield to 0.41 g ethanol/g sugars. Hydrolysis using HNO3 led to the generation of reactive species. Neutralization using only NaOH yielded 0.02 g ethanol/g sugars, and electrodialysis provided only a slight enhancement (0.06 g ethanol/g sugars). However, lowering the levels of reactive species further increased the yield to 0.25 g ethanol/g sugars, and K+ supplementation increased the yield to 0.35 g ethanol/g sugars. Overall, hydrolysis using H2SO4 + Ca(OH)2 provided the highest ethanol yield, and the yield was almost same as from conventional medium. This research emphasizes the importance of post-treatment processing that is modified for the species or strains used for bioethanol fermentation.
Funder
The Ministry of Science and ICT, Republic of Korea
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献