Abstract
AbstractAcross the globe, many transport bodies are advocating for increased cycling due to its health and environmental benefits. Yet, the real and perceived dangers of urban cycling remain obstacles. While serious injuries and fatalities in cycling are infrequent, “near misses”-events where a person on a bike is forced to avoid a potential crash or is unsettled by a close vehicle-are more prevalent. To understand these occurrences, researchers have turned to naturalistic studies, attaching various sensors like video cameras to bikes or cyclists. This sensor data holds the potential to unravel the risks cyclists face. Still, the sheer amount of video data often demands manual processing, limiting the scope of such studies. In this paper, we unveil a cutting-edge computer vision framework tailored for automated near-miss video analysis and for detecting various associated risk factors. Additionally, the framework can understand the statistical significance of various risk factors, providing a comprehensive understanding of the issues faced by cyclists. We shed light on the pronounced effects of factors like glare, vehicle and pedestrian presence, examining their roles in near misses through Granger causality with varied time lags. This framework enables the automated detection of multiple factors and understanding their significant weight, thus enhancing the efficiency and scope of naturalistic cycling studies. As future work, this research opens the possibility of integrating this AI framework into edge sensors through embedded AI, enabling real-time analysis.
Publisher
Springer Science and Business Media LLC