Computer vision and statistical insights into cycling near miss dynamics

Author:

Ibrahim Mohamed

Abstract

AbstractAcross the globe, many transport bodies are advocating for increased cycling due to its health and environmental benefits. Yet, the real and perceived dangers of urban cycling remain obstacles. While serious injuries and fatalities in cycling are infrequent, “near misses”-events where a person on a bike is forced to avoid a potential crash or is unsettled by a close vehicle-are more prevalent. To understand these occurrences, researchers have turned to naturalistic studies, attaching various sensors like video cameras to bikes or cyclists. This sensor data holds the potential to unravel the risks cyclists face. Still, the sheer amount of video data often demands manual processing, limiting the scope of such studies. In this paper, we unveil a cutting-edge computer vision framework tailored for automated near-miss video analysis and for detecting various associated risk factors. Additionally, the framework can understand the statistical significance of various risk factors, providing a comprehensive understanding of the issues faced by cyclists. We shed light on the pronounced effects of factors like glare, vehicle and pedestrian presence, examining their roles in near misses through Granger causality with varied time lags. This framework enables the automated detection of multiple factors and understanding their significant weight, thus enhancing the efficiency and scope of naturalistic cycling studies. As future work, this research opens the possibility of integrating this AI framework into edge sensors through embedded AI, enabling real-time analysis.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3