Solid mineral potential evaluation using integrated aeromagnetic and aeroradiometric datasets

Author:

Ogah Arewa James,Abubakar Fahad

Abstract

AbstractThe analytical hierarchy process (AHP) was employed to delineate the mineralisation potential across the notable schist belts in northwestern Nigeria. High-resolution aeromagnetic and aeroradiometric datasets were taken into consideration. This was achieved by using advanced signal enhancement techniques to study the structures, identify the hydrothermal alteration zones (that could serve as a pathway for mineralisation), and understand the geologic settings. Amongst the enhancement techniques are first vertical gradient, analytic signal, CET grid analysis and porphyry, Euler deconvolution, and K/Th ratio. The analytic signal reveals lithologic contact, structures and anomalous occurrences that aided the classification of the site into three magneto-lithologic zones: high (> 0.094 nT/m), intermediate (0.028 to 0.094 nT/m), and low magnetic zones (< 0.028 nT/m). The high magnetic zones (HMZ) were considered the main magnetic source outlines, which are inferred to be dominantly intrusive zones for hydrothermal activities. The 3-dimensional Euler deconvolution reveals highly magnetic and intrusive depth sources to be within the range of < 100 to 500 m. The Centre for Exploration Targeting (CET) grid technique revealed the structural distribution from which the lineament density map was produced. The orientations of the prevalent structural anomalies are E-W, NE-SW, WNW-ESE and NW–SE, with similar orientations observed from the first vertical gradient and the analytic signal. The highly dense structural zones coincide with the high magnetic zones and high-frequency amplitudes of the analytic signal and the vertical gradient map, respectively. Additionally, the CET porphyry detects the centres of the intrusive porphyries to be within zones of high lineament density. This reveals that the mineralisation potential of the area is structurally controlled. On the other hand, radioelement maps (eU, eTh, and K%) and ternary maps were used for lithological classification. The radiometric ternary map revealed the highly radioactive zones and the superior concentration of individual radioelements in their respective areas. The K/eTh ratio map delineates highly potassic alteration zones. The AHP model and weighted overlay tool were employed to integrate the analytic signal, lineament density, and K/Th ratio. Consequently, the mineralisation potential of the study site was revealed and classified into high, moderate, and low. This result was validated using known mine sites. There was a total agreement, with 87.5% of mines plotting within the high mineralisation potential class and 12.5% in the moderate class. Promising targets were identified for development.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference96 articles.

1. Mohamed, A., Abdelrady, M., Alshehri, F., Mohammed, M. A. & Abdelrady, A. Detection of mineralization zones using aeromagnetic data. Appl. Sci. 12, 9078 (2022).

2. Gopinathan, P. et al. Mapping of ferric (Fe3+) and ferrous (Fe2+) iron oxides distribution using band ratio techniques with ASTER data and geochemistry of Kanjamalai and Godumalai, Tamil Nadu, south India. Rem. Sens. Appl. 18, 100306 (2020).

3. Obaje, N. G. Geology and Mineral Resources of Nigeria Vol. 120 (Springer, 2009).

4. Olade, M. A. Mineral Deposits and Exploration Potential of Nigeria. (Prescott books, 2021).

5. Mekkawi, M. M. Application of magnetic method in mineral exploration: Iron ore deposit, south Zagros Suture zone, Iraq. Egypt. Geophys. Soc. EGS J. 12, 117–124 (2012).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3