Improved patient mortality predictions in emergency departments with deep learning data-synthesis and ensemble models

Author:

Son Byounghoon,Myung Jinwoo,Shin Younghwan,Kim Sangdo,Kim Sung Hyun,Chung Jong-Moon,Noh Jiyoung,Cho Junho,Chung Hyun Soo

Abstract

AbstractThe triage process in emergency departments (EDs) relies on the subjective assessment of medical practitioners, making it unreliable in certain aspects. There is a need for a more accurate and objective algorithm to determine the urgency of patients. This paper explores the application of advanced data-synthesis algorithms, machine learning (ML) algorithms, and ensemble models to predict patient mortality. Patients predicted to be at risk of mortality are in a highly critical condition, signifying an urgent need for immediate medical intervention. This paper aims to determine the most effective method for predicting mortality by enhancing the F1 score while maintaining high area under the receiver operating characteristic curve (AUC) score. This study used a dataset of 7325 patients who visited the Yonsei Severance Hospital’s ED, located in Seoul, South Korea. The patients were divided into two groups: patients who deceased in the ED and patients who didn’t. Various data-synthesis techniques, such as SMOTE, ADASYN, CTGAN, TVAE, CopulaGAN, and Gaussian Copula, were deployed to generate synthetic patient data. Twenty two ML models were then utilized, including tree-based algorithms like Decision tree, AdaBoost, LightGBM, CatBoost, XGBoost, NGBoost, TabNet, which are deep neural network algorithms, and statistical algorithms such as Support Vector Machine, Logistic Regression, Random Forest, k-nearest neighbors, and Gaussian Naive Bayes, as well as Ensemble Models which use the results from the ML models. Based on 21 patient information features used in the pandemic influenza triage algorithm (PITA), the models explained previously were applied to aim for the prediction of patient mortality. In evaluating ML algorithms using an imbalanced medical dataset, conventional metrics like accuracy scores or AUC can be misleading. This paper emphasizes the importance of using the F1 score as the primary performance measure, focusing on recall and specificity in detecting patient mortality. The highest-ranked model for predicting mortality utilized the Gaussian Copula data-synthesis technique and the CatBoost classifier, achieving an AUC of 0.9731 and an F1 score of 0.7059. These findings highlight the effectiveness of machine learning algorithms and data-synthesis techniques in improving the prediction performance of mortality in EDs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3