Size segregation of irregular granular materials captured by time-resolved 3D imaging

Author:

Gajjar Parmesh,Johnson Chris G.,Carr James,Chrispeels Kevin,Gray J. M. N. T.,Withers Philip J.

Abstract

AbstractWhen opening a box of mixed nuts, a common experience is to find the largest nuts at the top. This well-known effect is the result of size-segregation where differently sized ‘particles’ sort themselves into distinct layers when shaken, vibrated or sheared. Colloquially this is known as the ‘Brazil-nut effect’. While there have been many studies into the phenomena, difficulties observing granular materials mean that we still know relatively little about the process by which irregular larger particles (the Brazil nuts) reach the top. Here, for the first time, we capture the complex dynamics of Brazil nut motion within a sheared nut mixture through time-lapse X-ray Computed Tomography (CT). We have found that the Brazil nuts do not start to rise until they have first rotated sufficiently towards the vertical axis and then ultimately return to a flat orientation when they reach the surface. We also consider why certain Brazil nuts do not rise through the pack. This study highlights the important role of particle shape and orientation in segregation. Further, this ability to track the motion in 3D will pave the way for new experimental studies of segregating mixtures and will open the door to even more realistic simulations and powerful predictive models. Understanding the effect of size and shape on segregation has implications far beyond food products including various anti-mixing behaviors critical to many industries such as pharmaceuticals and mining.

Funder

Engineering and Physical Sciences Research Council

Natural Environment Research Council

Royal Society

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference23 articles.

1. Johanson, J. R. Particle segregation and what to do about it. Chem. Eng., 183–188 (1978).

2. Liss, E. D., Conway, S. L., Zega, J. A. & Glasser, B. J. Segregation of powders during gravity flow through vertical pipes. Pharm. Technol. 28, 78–96 (2004).

3. Dyer, F. C. The scope for reverse classification by crowded settling in ore-dressing practice. Eng. Min. J 127, 1030–1033 (1929).

4. Rosato, A., Strandburg, K. J., Prinz, F. & Swendsen, R. H. Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038–1040. https://doi.org/10.1103/PhysRevLett.58.1038 (1987).

5. Ottino, J. M. & Khakhar, D. V. Mixing and segregation of granular materials. Ann. Rev. Fluid Mech. 32, 55–91. https://doi.org/10.1146/annurev.fluid.32.1.55 (2000).

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3