AAGCN: a graph convolutional neural network with adaptive feature and topology learning

Author:

Wang Bin,Cai Bodong,Sheng Jinfang,Jiao Wenzhe

Abstract

AbstractIn recent years, there has been a growing prevalence of deep learning in various domains, owing to advancements in information technology and computing power. Graph neural network methods within deep learning have shown remarkable capabilities in processing graph-structured data, such as social networks and traffic networks. As a result, they have garnered significant attention from researchers.However, real-world data often face challenges like data sparsity and missing labels, which can hinder the performance and generalization ability of graph convolutional neural networks. To overcome these challenges, our research aims to effectively extract the hidden features and topological information of graph convolutional neural networks. We propose an innovative model called Adaptive Feature and Topology Graph Convolutional Neural Network (AAGCN). By incorporating an adaptive layer, our model preprocesses the data and integrates the hidden features and topological information with the original data’s features and structure. These fused features are then utilized in the convolutional layer for training, significantly enhancing the expressive power of graph convolutional neural networks.To evaluate the effectiveness of the adaptive layer in the AAGCN model, we conducted node classification experiments on real datasets. The results validate its ability to address data sparsity and improve the classification performance of graph convolutional neural networks.In conclusion, our research primarily focuses on addressing data sparsity and missing labels in graph convolutional neural networks. The proposed AAGCN model, which incorporates an adaptive layer, effectively extracts hidden features and topological information, thereby enhancing the expressive power and classification performance of these networks.

Funder

Key Research and Development Program of Hunan Province of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3