Change detection based on unsupervised sparse representation for fundus image pair

Author:

Fu Yinghua,Zhao Xing,Liang Yong,Zhao Tiejun,Wang Chaoli,Zhang Dawei

Abstract

AbstractDetecting changes is an important issue for ophthalmology to compare longitudinal fundus images at different stages and obtain change regions. Illumination variations bring distractions on the change regions by the pixel-by-pixel comparison. In this paper, a new unsupervised change detection method based on sparse representation classification (SRC) is proposed for the fundus image pair. First, the local neighborhood patches are extracted from the reference image to build a dictionary of the local background. Then the current image patch is represented sparsely and its background is reconstructed by the obtained dictionary. Finally, change regions are given through background subtracting. The SRC method can correct automatically illumination variations through the representation coefficients and filter local contrast and global intensity effectively. In experiments of this paper, the AUC and mAP values of SRC method are 0.9858 and 0.8647 respectively for the image pair with small lesions; the AUC and mAP values of the fusion method of IRHSF and SRC are 0.9892 and 0.9692 separately for the image pair with the big change region. Experiments show that the proposed method in this paper is more robust than RPCA for the illumination variations and can detect change regions more effectively than pixel-wised image differencing.

Funder

Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Siamese YOLO V5 with Structure coefficient for object-level change detection;2023-12-29

2. Selective Signal Extraction based on OMP algorithm and DCT and DST Dictionaries;2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC);2022-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3