Author:
Chi Chengquan,Li Chenyang,Han Ying,Yu Zining,Li Xiang,Zhang Dewang
Abstract
AbstractBorehole strain monitoring plays a critical role in earthquake precursor research. With the accumulation of observation data, traditional data processing methods struggle to handle the challenges of big data. This study proposes a segmented variational mode decomposition method and a GRU-LUBE deep learning network based on machine learning theory. The algorithm enhances data correlation during decomposition and effectively predicts borehole strain data changes. We extract pre-earthquake anomalies from four-component borehole strain data of the Guza station for two major earthquakes in Sichuan (Wenchuan and Lushan earthquakes), obtaining more comprehensive anomalies than previous studies. Statistical analysis reveals similar abnormal phenomena in the Guza station’s borehole strain data before both earthquakes, suggesting shared crustal stress accumulation and release patterns. These findings highlight the need for further research to improve earthquake prediction and preparedness through understanding underlying mechanisms.
Funder
Hainan Provincial Natural Science Foundation of China
the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation
Fundamental Research Funds for the Central Universities
Youth Fund of the National Natural Science Foundation of China
the Education Department of Hainan Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献