Enhancement of the catalytic performance of Co-ZIF/WO3 heterostructures for selective catalytic reduction of NOx

Author:

Alamgholiloo HassanORCID,Asgari EsrafilORCID,Sheikhmohammadi AmirORCID,Ghasemian NaserORCID,Hashemzadeh BayramORCID,Nourmoradi HeshmatollahORCID

Abstract

AbstractNitrogen oxides (NOx) are one of the growing air pollutants in industrial countries, and their emissions are regulated by stringent legislation. Therefore, the design of the catalyst comprised of metal oxides and ZIFs a potential solution for improving selective catalytic reduction (SCR) of NOx. Here, an efficient strategy was described to fabricate Co-ZIF/WO3 heterostructures for SCR of NOx. First, WO3 nanostructures were fabricated by the solvothermal method, and subsequently epitaxial growth of ZIF-67 on the metal oxide surface to create a new type of semiconductor Co-ZIF/WO3 heterostructures. The obtained heterostructures were systemically characterized by wide-angle XRD, FESEM, UV DRS, FT-IR, AFM, and TEM spectroscopies. The Co-ZIF/WO3 heterostructures shift the temperature corresponding to the maximum conversion around 50 °C towards lower temperatures. The maximum conversion is substantially enhanced from 55% at 400 °C to 78% at 350 °C. The enhanced activity is attributed to better interaction and synergic effect of WO3 incorporated into ZIF-67 and also the electron transfer facility between the WO3 and Co species in Co-ZIF/WO3 heterostructures. Moreover, Co-ZIF/WO3 results in a distinct effect on the production of carbon monoxide (CO) in the product gas stream. The current study highlights some of the challenges in the development of semiconductor-based heterostructures for a decrease in air pollution.

Funder

Khoy University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3