A novel formulation technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation

Author:

Wilson Kenneth,Grzywacz David,Curcic Igor,Scoates Freya,Harper Karen,Rice Annabel,Paul Nigel,Dillon Aoife

Abstract

AbstractBiopesticides are biological pest control agents that are viewed as safer alternatives to the synthetic chemicals that dominate the global insecticide market. A major constraint on the wider adoption of biopesticides is their susceptibility to the ultraviolet (UV: 290–400 nm) radiation in sunlight, which limits their persistence and efficacy. Here, we describe a novel formulation technology for biopesticides in which the active ingredient (baculovirus) is micro-encapsulated in an ENTOSTAT wax combined with a UV absorbant (titanium dioxide, TiO2). Importantly, this capsule protects the sensitive viral DNA from degrading in sunlight, but dissolves in the alkaline insect gut to release the virus, which then infects and kills the pest. We show, using simulated sunlight, in both laboratory bioassays and trials on cabbage and tomato plants, that this can extend the efficacy of the biopesticide well beyond the few hours of existing virus formulations, potentially increasing the spray interval and/or reducing the need for high application rates. The new formulation has a shelf-life at 30 °C of at least 6 months, which is comparable to standard commercial biopesticides and has no phytotoxic effect on the host plants. Taken together, these findings suggest that the new formulation technology could reduce the costs and increase the efficacy of baculovirus biopesticides, with the potential to make them commercially competitive alternatives to synthetic chemicals.

Funder

Innovate UK

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3