Author:
Eilers Paul H. C.,Ruckebusch Cyril
Abstract
AbstractWe present a fast and simple algorithm for super-resolution with single images. It is based on penalized least squares regression and exploits the tensor structure of two-dimensional convolution. A ridge penalty and a difference penalty are combined; the former removes singularities, while the latter eliminates ringing. We exploit the conjugate gradient algorithm to avoid explicit matrix inversion. Large images are handled with ease: zooming a 100 by 100 pixel image to 800 by 800 pixels takes less than a second on an average PC. Several examples, from applications in wide-field fluorescence microscopy, illustrate performance.
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献