Printability and microstructure of directed energy deposited SS316l-IN718 multi-material: numerical modeling and experimental analysis

Author:

Ghanavati Reza,Naffakh-Moosavy Homam,Moradi Mahmoud,Eshraghi Mohsen

Abstract

AbstractIn the present paper, the interrelated aspects of additive manufacturing-microstructure-property in directed energy deposition of SS316L-IN718 multi-material were studied through numerical modeling and experimental evaluation. The printability concept and solidification principles were used for this purpose. The printability analysis showed that the SS316L section is more susceptible to composition change and lack of fusion, respectively due to the high equilibrium vapor pressure of manganese and the more efficient heat loss in the initial layers. However, the IN718 section is more prone to distortion due to the formation of a larger melt pool, with a maximum thermal strain of 3.95 × 10−3 in the last layer. As the process continues, due to heat accumulation and extension of the melt pool, the cooling rate decreases and the undercooling level increases, which respectively result in coarser microstructure and more instability of solidification front in the build direction, as also observed in the experimental results. The difference is that the dendritic microstructure of the IN718 section, due to the eutectic reaction L → γ + Laves, is formed on a smaller scale compared to the cellular microstructure of the SS316L section. Also, the decrease in cooling rate caused the secondary phase fraction in each section (delta ferrite in SS316L and Laves in IN718) to increase almost linearly. However, the hardness calculation and measurement showed similarly, even though with the transition from SS316L to IN718 the hardness is significantly increased due to higher yield strength of the matrix and the presence of Laves intermetallic phase (~ 260 HV0.3), the hardness in each section decreases slightly due to the coarsening of the microstructure from the initial layer to the final.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3