Automated maternal behavior during early life in rodents (AMBER) pipeline

Author:

Lapp Hannah E.,Salazar Melissa G.,Champagne Frances A.

Abstract

AbstractMother-infant interactions during the early postnatal period are critical for infant survival and the scaffolding of infant development. Rodent models are used extensively to understand how these early social experiences influence neurobiology across the lifespan. However, methods for measuring postnatal dam-pup interactions typically involve time-consuming manual scoring, vary widely between research groups, and produce low density data that limits downstream analytical applications. To address these methodological issues, we developed the Automated Maternal Behavior during Early life in Rodents (AMBER) pipeline for quantifying home-cage maternal and mother–pup interactions using open-source machine learning tools. DeepLabCut was used to track key points on rat dams (32 points) and individual pups (9 points per pup) in postnatal day 1–10 video recordings. Pose estimation models reached key point test errors of approximately 4.1–10 mm (14.39 pixels) and 3.44–7.87 mm (11.81 pixels) depending on depth of animal in the frame averaged across all key points for dam and pups respectively. Pose estimation data and human-annotated behavior labels from 38 videos were used with Simple Behavioral Analysis (SimBA) to generate behavior classifiers for dam active nursing, passive nursing, nest attendance, licking and grooming, self-directed grooming, eating, and drinking using random forest algorithms. All classifiers had excellent performance on test frames, with F1 scores above 0.886. Performance on hold-out videos remained high for nest attendance (F1 = 0.990), active nursing (F1 = 0.828), and licking and grooming (F1 = 0.766) but was lower for eating, drinking, and self-directed grooming (F1 = 0.534–0.554). A set of 242 videos was used with AMBER and produced behavior measures in the expected range from postnatal 1–10 home-cage videos. This pipeline is a major advancement in assessing home-cage dam-pup interactions in a way that reduces experimenter burden while increasing reproducibility, reliability, and detail of data for use in developmental studies without the need for special housing systems or proprietary software.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3