Polystyrene nanoplastics of different particle sizes regulate the polarization of pro-inflammatory macrophages

Author:

Jiang Wanlan,Liu Yilin,Wu Yuqi,Zhang Lu,Zhang Biqing,Zhou Shiliang,Zhang Peng,Xu Ting,Wu Min,Lv Songwei

Abstract

AbstractMicroplastics (MPs) are defined as plastic particles smaller than 5 mm in size, and nanoplastics (NPs) are those MPs with a particle size of less than 1000 nm or 100 nm. The prevalence of MPs in the environment and human tissues has raised concerns about their potential negative effects on human health. Macrophages are the major defence against foreign substances in the intestine, and can be polarized into two types: the M1 phenotype and the M2 phenotype. However, the effect of NPs on the polarization of macrophages remains unclear. Herein, we selected polystyrene, one of the most plastics in the environment and controlled the particle sizes at 50 nm and 500 nm respectively to study the effects on the polarization of macrophages. We used mouse RAW264.7 cell line models in this macrophage-associated study. Experiments on cell absorption showed that macrophages could quickly ingest polystyrene nanoplastics of both diameters with time-dependent uptake. Compared to the untreated group and 10 μg/mL treatment group, macrophages exposed to 50 μg/mL groups (50 nm and 500 nm) had considerably higher levels of CD86, iNOS, and TNF-α, but decreased levels of aCD206, IL-10, and Arg-1. According to these findings, macrophage M1 and M2 polarization can both be induced and inhibited by 50 μg/mL 50 nm and 500 nm polystyrene nanoplastics. This work provided the first evidence of a possible MPs mode of action with appropriate concentration and size through the production of polarized M1, providing dietary and environmental recommendations for people, particularly those with autoimmune and autoinflammatory illnesses.

Funder

Science and Technology Project of Changzhou Health Committee for Young Talents

Leading Talent of Changzhou “The 14th Five-Year Plan” High-Level Health Talents Training Project

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

State Key Laboratory of Analytical Chemistry for Life Science

the Natural Science Foundation of the Jiangsu Higher Education Institution of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3