Switchable edge-line coupler based on parity time-reversal duality symmetry

Author:

Nadeem Iram,Verri Valentina,Martini Enrica,Morgia Fabio,Mattivi Maurizio,Toccafondi Alberto,Maci Stefano

Abstract

AbstractA compact broadband Edge-Line Coupler (ELC) based on Parity Time-reversal Duality (PTD) symmetry has been conceived, designed, constructed and measured. The coupler connects four PTD bifilar edge lines (BELs), recently introduced by the authors. The PTD-BELs are constituted by a parallel plate waveguide whose walls are formed by a junction between Perfect Electric Conductor (PEC) and Perfect Magnetic Conductor (PMC) boundary conditions. Reversing the axis orthogonal to the plates interchanges the position of PEC and PMC. Such a waveguide supports unimodal transverse electromagnetic (TEM) propagation, extremely confined along the top and bottom junction edges; its propagation is protected against backscattering from any discontinuity that preserves the PTD symmetry. The ELC presented here is constituted by a 4-port junction in which each port is intrinsically matched due to the PTD symmetry, strongly coupled with a second port, strongly decoupled with a third port, and weakly coupled with a fourth port. The ELC is designed by using a mushroom metasurface for the PMC portion of the device; the connection is based on a switch circuit which imposes open and short conditions on the two opposite sides of the structure. Switching simultaneously the open and short circuits reroutes the signal in a different port, while maintaining the same level of coupling with the other ports. A static prototype has been built and its measurements have confirmed the matching performance and the good directionality of the coupler in a broadband frequency range between 24 and 30 GHz.

Funder

Huawei Technologies,China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Backscattering Protection in a Fully Metallic PTD-Symmetric Bifilar Edge Line (BEL);IEEE Transactions on Antennas and Propagation;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3