Semi-analytical solution for bottomhole pressure transient analysis of a hydraulically fractured horizontal well in a fracture-cavity reservoir

Author:

Hailong Liu

Abstract

AbstractThis paper study the role of hydraulic fracture properties on the transient bottomhole pressure (BHP) behavior of a horizontal well producing from a tight fracture-cavity reservoir. A combination of point source function, Laplace transformation and Perturbation transformation are used to obtain BHP step by step. Through literature comparison and numerical simulation, the results of BHP have a good consistency, which indicates the proposed method is scientific and reasonable. We divide the fluid flow into five stages, namely the wellbore storage stage, the karst cave fluid flows to the fracture stage, the radial flow stage of karst cave and fracture system, the matrix fluid flows to the fracture stage and the quasi-steady state stage. We come to the conclusion that the number of fractures and fracture direction mainly affect radial flow stage. In contrast, the length of horizontal subsection and skin factor mainly affect the karst cave fluid flows to the fracture stage. The matrix fluid flows to the fracture stage is more obvious when the fracture half-length and the horizontal segment spacing of the horizontal well are small. The study believes special attention should be paid to reforming the formations at both ends of the horizontal well. The advantage of this method is to incorporate well geometry (skin factor) and hydraulic fracturing design (fracture parameters), which is useful for well test interpretation through generating a new set of type curves. What’s more, this new method has the characteristics of easy calculation. The findings of this study can help for better understanding of well test analysis in fracture-cavity reservoir. However, the limitation of this study is that it is only suitable for this situation the horizontal well does not encounter karst caves and the karst caves in the reservoir are connected to the wellbore through fractures.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference33 articles.

1. Warren, J. E. & Root, P. J. The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3(03), 245–255. https://doi.org/10.2118/426-PA (1963).

2. Brown, M. O. et al. Practical Solutions for Pressure Transient Responses of Fractured Horizontal Wells in Unconventional Reservoirs (SPE, 1987).

3. Yang, D. Y. et al. Performance evaluation of a horizontal well with multiple fractures by use of a slab-source function. SPE J. 39(1), 12–27 (2000).

4. Zhang, F. Z. et al. Analytical method for performance evaluation of fractured horizontal wells in tight reservoirs. J. Nat. Gas Sci. Eng. 33(2), 419–426 (2016).

5. Bui, T. D., Mamora, D. D. & Lee, W. J. Transient Pressure Analysis for Partially Penetrating Wells in Naturally Fractured Reservoirs (SPE, 2000).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3