Abstract
AbstractRepresenting data as networks cuts across all sub-disciplines in ecology and evolutionary biology. Besides providing a compact representation of the interconnections between agents, network analysis allows the identification of especially important nodes, according to various metrics that often rely on the calculation of the shortest paths connecting any two nodes. While the interpretation of a shortest paths is straightforward in binary, unweighted networks, whenever weights are reported, the calculation could yield unexpected results. We analyzed 129 studies of ecological networks published in the last decade that use shortest paths, and discovered a methodological inaccuracy related to the edge weights used to calculate shortest paths (and related centrality measures), particularly in interaction networks. Specifically, 49% of the studies do not report sufficient information on the calculation to allow their replication, and 61% of the studies on weighted networks may contain errors in how shortest paths are calculated. Using toy models and empirical ecological data, we show how to transform the data prior to calculation and illustrate the pitfalls that need to be avoided. We conclude by proposing a five-point check-list to foster best-practices in the calculation and reporting of centrality measures in ecology and evolution studies.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Dale, M. R. T. Applying Graph Theory in Ecological Research. 344pp. Cambridge University Press). ISBN 9781316105450 (2017).
2. Delmas, E. et al. Analysing ecological networks of species interactions. Biological Reviews (2017).
3. Brose, U. et al. Spatial aspects of food webs. In: Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development, and Environmental Change. Eds De Ruiter, P. C., Wolters, V. & Moore, J. C. Academic Press (2005).
4. Altermatt, F., Seymour, M. & Martinez, N. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J. Biogeog. 40, 2249–2260 (2013).
5. Martín González, A. M. et al. The macroecology of phylogenetically structured hummingbird-plant networks. Glob. Ecol. Biogeogr. 24, 1212–1224 (2015).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献