Author:
Tang Sitian,Mei Zhu,Huang Dongmei,Liu Ling,Yang Lunyu,Yin Dan,Hu Liyi
Abstract
AbstractThe study aims to assess the accuracy of the arterial blood gas (ABG) analysis in measuring hemoglobin, potassium, sodium, and glucose concentrations in comparison to standard venous blood analysis among patients diagnosed with chronic obstructive pulmonary disease (COPD). From January to March 2023, results of ABG analysis and simultaneous venous blood sampling among patients with COPD were retrospectively compared, without any intervention being applied between the two methods. The differences in hemoglobin, potassium, sodium, and glucose concentrations were assessed using a statistical software program (R software). There were significant differences in the mean concentrations of hemoglobin (p < 0.001), potassium (p < 0.001), and sodium (p = 0.001) between the results from ABG and standard venous blood analysis. However, the magnitude of the difference was within the total error allowance (TEa) of the United States of Clinical Laboratory Improvement Amendments (US-CLIA). As for the innovatively studied glucose concentrations, a statistically significant difference between the results obtained from ABG (7.8 ± 3.00) mmol·L−1 and venous blood (6.72 ± 2.44) mmol·L−1 was noted (p < 0.001), with the difference exceeding the TEa of US-CLIA. A linear relationship between venous blood glucose and ABG was obtained: venous blood glucose (mmol·L−1) = − 0.487 + 0.923 × ABG glucose (mmol·L−1), with R2 of 0.882. The hemoglobin, potassium, and sodium concentrations in ABG were reliable for guiding treatment in managing COPD emergencies. However, the ABG analysis of glucose was significantly higher as compared to venous blood glucose, and there was a positive correlation between the two methods. Thus, a linear regression equation in this study combined with ABG analysis could be helpful in quickly estimating venous blood glucose during COPD emergency treatment before the standard venous blood glucose was available from the medical laboratory.
Funder
Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission
Publisher
Springer Science and Business Media LLC