Pseudo-class part prototype networks for interpretable breast cancer classification

Author:

Choukali Mohammad Amin,Amirani Mehdi Chehel,Valizadeh Morteza,Abbasi Ata,Komeili Majid

Abstract

AbstractInterpretability in machine learning has become increasingly important as machine learning is being used in more and more applications, including those with high-stakes consequences such as healthcare where Interpretability has been regarded as a key to the successful adoption of machine learning models. However, using confounding/irrelevant information in making predictions by deep learning models, even the interpretable ones, poses critical challenges to their clinical acceptance. That has recently drawn researchers’ attention to issues beyond the mere interpretation of deep learning models. In this paper, we first investigate application of an inherently interpretable prototype-based architecture, known as ProtoPNet, for breast cancer classification in digital pathology and highlight its shortcomings in this application. Then, we propose a new method that uses more medically relevant information and makes more accurate and interpretable predictions. Our method leverages the clustering concept and implicitly increases the number of classes in the training dataset. The proposed method learns more relevant prototypes without any pixel-level annotated data. To have a more holistic assessment, in addition to classification accuracy, we define a new metric for assessing the degree of interpretability based on the comments of a group of skilled pathologists. Experimental results on the BreakHis dataset show that the proposed method effectively improves the classification accuracy and interpretability by respectively $$8 \%$$ 8 % and $$18 \%$$ 18 % . Therefore, the proposed method can be seen as a step toward implementing interpretable deep learning models for the detection of breast cancer using histopathology images.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3