Polydimethylsiloxane as a more biocompatible alternative to glass in optogenetics

Author:

Andersen Michael Aagaard,Schouenborg Jens

Abstract

AbstractOptogenetics is highly useful to stimulate or inhibit defined neuronal populations and is often used together with electrophysiological recordings. Due to poor penetration of light in tissue, there is a need for biocompatible wave guides. Glass wave guides are relatively stiff and known to cause glia reaction that likely influence the activity in the remaining neurons. We developed highly flexible micro wave guides for optogenetics that can be used in combination with long-lasting electrophysiological recordings. We designed and evaluated polydimethylsiloxane (PDMS) mono-fibers, which use the tissue as cladding, with a diameter of 71 ± 10 µm and 126 ± 5 µm. We showed that micro PDMS fibers transmitted 9–33 mW/mm2 light energy enough to activate channelrhodopsin. This was confirmed in acute extracellular recordings in vivo in which optogenetic stimulation through the PDMS fibers generated action potentials in rat hippocampus with a short onset latency. PDMS fibers had significantly less microglia and astrocytic activation in the zone nearest to the implant as compared to glass. There was no obvious difference in number of adjacent neurons between size matched wave guides. Micro PDMS wave guide demonstrates in vivo functionality and improved biocompatibility as compared to glass. This enables the delivery of light with less tissue damage.

Funder

Vetenskapsrådet

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3