Validation of deep learning natural language processing algorithm for keyword extraction from pathology reports in electronic health records

Author:

Kim Yoojoong,Lee Jeong Hyeon,Choi Sunho,Lee Jeong Moon,Kim Jong-Ho,Seok Junhee,Joo Hyung Joon

Abstract

AbstractPathology reports contain the essential data for both clinical and research purposes. However, the extraction of meaningful, qualitative data from the original document is difficult due to the narrative and complex nature of such reports. Keyword extraction for pathology reports is necessary to summarize the informative text and reduce intensive time consumption. In this study, we employed a deep learning model for the natural language process to extract keywords from pathology reports and presented the supervised keyword extraction algorithm. We considered three types of pathological keywords, namely specimen, procedure, and pathology types. We compared the performance of the present algorithm with the conventional keyword extraction methods on the 3115 pathology reports that were manually labeled by professional pathologists. Additionally, we applied the present algorithm to 36,014 unlabeled pathology reports and analysed the extracted keywords with biomedical vocabulary sets. The results demonstrated the suitability of our model for practical application in extracting important data from pathology reports.

Funder

National Research Foundation of Korea

Korea Health Industry Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3