Atomistic-scale analysis of the deformation and failure of polypropylene composites reinforced by functionalized silica nanoparticles

Author:

Sorkin V.,Pei Q. X.,Liu P.,Thitsartarn W.,He C. B.,Zhang Y. W.

Abstract

AbstractInterfacial adhesion between polymer matrix and reinforcing silica nanoparticles plays an important role in strengthening polypropylene (PP) composite. To improve the adhesion strength, the surface of silica nanoparticles can be modified by grafted functional molecules. Using atomistic simulations, we examined the effect of functionalization of silica nanoparticles by hexamethyldisilazane (HMDS) and octyltriethoxysilane (OTES) molecules on the deformation and failure of silica-reinforced PP composite. We found that the ultimate tensile strength (UTS) of PP composite functionalized by OTES (28 MPa) is higher than that of HMDS (25 MPa), which is in turn higher than that passivated only by hydrogen (22 MPa). To understand the underlying mechanistic origin, we calculated the adhesive energy and interfacial strength of the interphase region, and found that both the adhesive energy and interfacial strength are the highest for the silica nanoparticles functionalized by OTES molecules, while both are the lowest by hydrogen. The ultimate failure of the polymer composite is initiated by the cavitation in the interphase region with the lowest mass density, and this cavitation failure mode is common for all the examined PP composites, but the cavitation position is dependent on the tail length of the functional molecules. The present work provides interesting insights into the deformation and cavitation failure mechanisms of the silica-reinforced PP composites, and the findings can be used as useful guidelines in selecting chemical agents for surface treatment of silica nanoparticles.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3