Practical application of quantum neural network to materials informatics

Author:

Hirai Hirotoshi

Abstract

AbstractQuantum neural network (QNN) models have received increasing attention owing to their strong expressibility and resistance to overfitting. It is particularly useful when the size of the training data is small, making it a good fit for materials informatics (MI) problems. However, there are only a few examples of the application of QNN to multivariate regression models, and little is known about how these models are constructed. This study aims to construct a QNN model to predict the melting points of metal oxides as an example of a multivariate regression task for the MI problem. Different architectures (encoding methods and entangler arrangements) are explored to create an effective QNN model. Shallow-depth ansatzs could achieve sufficient expressibility using sufficiently entangled circuits. The “linear” entangler was adequate for providing the necessary entanglement. The expressibility of the QNN model could be further improved by increasing the circuit width. The generalization performance could also be improved, outperforming the classical NN model. No overfitting was observed in the QNN models with a well-designed encoder. These findings suggest that QNN can be a useful tool for MI.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3