Synthesis of bimetallic nanoparticles loaded on to PNIPAM hybrid microgel and their catalytic activity

Author:

Kakar Mohib Ullah,Khan Khakemin,Akram Muhammad,Sami Rokayya,Khojah Ebtihal,Iqbal Imran,Helal Mahmoud,Hakeem Abdul,Deng Yulin,Dai Rongji

Abstract

AbstractThis study was designed to preparecarboxyl-functionalized poly (N-isopropylacrylamide) PNIPAM microgels having excellent catalytic properties.Recently, researchers are trying to fabricate cost effective and efficient hybrid catalytic materials for the synthesis of nitrogenous compounds along with enhanced optical properties. For the same motive, synthesis of carboxyl-functionalized PNIPAM microgels was performed by using polymerization of soap-free emulsion of N-isopropyl acrylamide, which is NIPAM along with acrylic acid (AA). The thiol group was introduced through the imide bond mediated by carbodiimide, between carboxyl-functionalized microgels through carboxyl group and aminoethanethiol (AET). Copper, Palladium and Cu/Pd nanoparticles were incorporated successfully into thiol-functionalized PNIPAM microgels through metals thiol linkage. The synthesized microgels and hybrid encompassing metallic nanoparticles were characterized in detail by using Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron (XPS) and Fourier transformed infrared spectroscopy for structural interpretation. The thermal properties of the pure and hybrid microgels were inspected by TG analysis. The prepared nanocomposites PNIPAM-Cu, PNIPAM-Pd and PNIPAM-Cu/Pd exhibited decent catalytic properties for the degradation of 4-Nitrophenol and methylene blue, but the bimetallic Cu/Pd have remarkable catalytic properties. The catalytic reaction followed pseudo-first-order reaction with rate constants 0.223 min−1, 0.173 min−1 for 4-Nitrophenol and methylene blue in that order. In this study,we were able to establish that Cu/Pd hybrid is an efficient catalyst for 4-Nitrophenol and methylene blue as compared to its atomic analogue.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3