Viability, task switching, and fall avoidance of the simplest dynamic walker

Author:

Patil Navendu S.,Dingwell Jonathan B.,Cusumano Joseph P.

Abstract

AbstractWalking humans display great versatility when achieving task goals, like avoiding obstacles or walking alongside others, but the relevance of this to fall avoidance remains unknown. We recently demonstrated a functional connection between the motor regulation needed to achieve task goals (e.g., maintaining walking speed) and a simple walker’s ability to reject large disturbances. Here, for the same model, we identify the viability kernel—the largest state-space region where the walker can step forever via at least one sequence of push-off inputs per state. We further find that only a few basins of attraction of the speed-regulated walker’s steady-state gaits can fully cover the viability kernel. This highlights a potentially important role of task-level motor regulation in fall avoidance. Therefore, we posit an adaptive hierarchical control/regulation strategy that switches between different task-level regulators to avoid falls. Our task switching controller only requires a target value of the regulated observable—a “task switch”—at every walking step, each chosen from a small, predetermined collection. Because humans have typically already learned to perform such goal-directed tasks during nominal walking conditions, this suggests that the “information cost” of biologically implementing such controllers for the nervous system, including cognitive demands in humans, could be quite low.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3