Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning

Author:

Mohajerani Yara,Jeong Seongsu,Scheuchl Bernd,Velicogna Isabella,Rignot Eric,Milillo Pietro

Abstract

AbstractDelineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3