Towards fully automated segmentation of rat cardiac MRI by leveraging deep learning frameworks

Author:

Fernández-Llaneza Daniel,Gondová Andrea,Vince Harris,Patra Arijit,Zurek Magdalena,Konings Peter,Kagelid Patrik,Hultin Leif

Abstract

AbstractAutomated segmentation of human cardiac magnetic resonance datasets has been steadily improving during recent years. Similar applications would be highly useful to improve and speed up the studies of cardiac function in rodents in the preclinical context. However, the transfer of such segmentation methods to the preclinical research is compounded by the limited number of datasets and lower image resolution. In this paper we present a successful application of deep architectures 3D cardiac segmentation for rats in preclinical contexts which to our knowledge has not yet been reported. We developed segmentation models that expand on the standard U-Net architecture and evaluated models separately trained for systole and diastole phases (2MSA) and a single model trained for all phases (1MSA). Furthermore, we calibrated model outputs using a Gaussian process (GP)-based prior to improve phase selection. The resulting models approach human performance in terms of left ventricular segmentation quality and ejection fraction (EF) estimation in both 1MSA and 2MSA settings (Sørensen-Dice score 0.91 ± 0.072 and 0.93 ± 0.032, respectively). 2MSA achieved a mean absolute difference between estimated and reference EF of 3.5 ± 2.5%, while 1MSA resulted in 4.1 ± 3.0%. Applying GPs to 1MSA enabled automating systole and diastole phase selection. Both segmentation approaches (1MSA and 2MSA) were statistically equivalent. Combined with a proposed cardiac phase selection strategy, our work presents an important first step towards a fully automated segmentation pipeline in the context of rat cardiac analysis.

Funder

AstraZeneca

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3